Is Turbulence Dangerous?

How Dangerous is Turbulence?

What is turbulence and is it dangerous for passenger aircraft?

How Dangerous is Turbulence for Passenger Jets?

Turbulence can be dangerous if you are not seated with your seatbelt fastened as in very severe cases it can it can cause you to be thrown around the aircraft cabin resulting in injury. However, turbulence does not pose a danger to the structural integrity of the aircraft – the plane will keep flying even in severe turbulence.

Turbulence is probably the single most common cause of anxiety for airline passengers, yet it rarely causes the pilots any concerns about the safety of the aircraft. Turbulence is very common and is usually experienced to some degree every single flight. In all but the most extreme cases, turbulence is not a danger to the safety of the flight, rather more of an uncomfortable inconvenience. In essence, turbulence is annoying but rarely dangerous and your plane won’t crash because of it.

The best way to see how bad the turbulence is expected to be is to watch the Cabin Crew. If they have stopped the service and taken their seats, you know it’s about to get pretty bumpy!

What is Turbulence?

Turbulence is a bit like driving down a bumpy road in a car, except in this case it’s the air in the sky that’s a bit bump and rough. There are a number of different types of turbulence, some of which can be detected by most commercial aircraft, whilst other types are invisible and very difficult to predict.

Types of Turbulence


Convective Turbulence

Convection is the process which causes clouds to form and is can also be responsible for creating turbulence associated with the clouds, particularly cumulus types. The greater the vertical extent of the cloud, the greater the updrafts and therefore the worse the turbulence is likely to be. It is particularly bad when flying through Cumulonimbus clouds (which are associated with very heavy rain showers / hail or thunderstorms).

Clear Air Turbulence

Clear Air Turbulence (nicknamed CAT) is caused by jet streams which are very strong corridors of wind found at high altitudes. They can reach in excess of 150mph and whilst this can dramatically reduce the flight time if the wind is behind you, they can also be responsible for strong levels of turbulence.

Jet Streams form between the boundaries of warm and cold air and therefore vary in position throughout the year. Whilst the position of the jet stream isn’t difficult to predict, the turbulence associated with it is very difficult to accurately pin point.

Low Level Thermals

This is hot air rising from the ground which is prevellent on hot days at low altitudes, particuarly when over land. They are worst when the ground is at its hottest, so typically in the afternoon.

Wake Turbulence

Unlike the other types of turbulence mentioned so far which are weather related, wake turbulence is phenomenon caused by other aircraft.

It is caused by the aerodynamic effects of flight through the interaction between low pressure at the top of the wing and high pressure at the bottom (needed to produce lift). The air moves from the bottom to the top of the wing at the wing tip which causes wing tip vortices. If you fly through another aircraft’s wake, you might experience turbulence from it.

Wake turbulence occurs for a few seconds and it can be very violent. Air traffic control apply minimum spacing between aircraft to ensure adequate wake turbulence separation. Very strong wake turbulence has caused aircraft to crash in the past – hence there is now minimum distance or time separation between aircraft.
When its windy, the wake turbulence disappears quickly, however when it’s calm, the wake lingers around for longer.

Wind

Generally speaking, when closer to the ground, the wind is subject to friction and its flow is effected by the Earth’s surface and anything on it (like buildings etc). Therefore, near the ground, the wind is less laminar (straight and steady) and more turbulent (varying in direction and speed). Rapid variations in direction and speed can cause turbulence at low level, particularly when the aircraft is on final approach coming into land.

Can Pilots Detect Turbulence?

Pilots can detect certain types of turbulence using an onboard weather radar. The radar highlights where there are large quantities of water droplets (rain) on the pilot’s instruments. Generally speaking the bigger the rain drops, the bigger the cloud, and the more turbulent it will be inside that cloud. The pilots make a judgement on if they can fly through the cloud or avoid it by flying around it.

Can Pilots Avoid Turbulence?

Sometimes. There are some types of turbulence which can’t be detected, like Clear Air Turbulence or CAT which is associated with a Jet Steam. Sometimes it’s forecast and the pilots can do their best to avoid it by avoiding certain flight levels, but sometimes the forecasts are wrong and the pilots fly into it without knowing it’s there. That’s why they ALWAYS recommend that passengers keep their seat belts fastened whenever seated, regardless of the status of the fasten belt sign.

Prior and during flight, the pilots will be studying various weather charts which predict where any areas of Clear Air Turbulence is located, or where any thunderstorm (cumulonimbus) clouds mights occur during the flight. It provides the flight crew with a rough location and the altitudes that turbulence may be encountered. The pilots can then take action at the pre-flight planning stage to adjust the planned flight level or routing of the flight if required.

The pilots will often put the fasten seatbelt signs on prior to experiencing any turbulence based on the forecast or following communication with ATC or other aircraft.

Pilot Actions

Passenger comfort is a high priority for pilots so when the aircraft enters turbulence they are almost always doing their best to get out of it. This is not because it’s dangerous, but because it’s uncomfortable for both the passengers and crew. The pilots don’t like it any more than you do. To get out of it, pilots are regularly speaking to air traffic control and other aircraft to see what levels are free of turbulence or where along the route it might subside.

Unfortunately on some days, turbulence is prevalent at all levels and is impossible to avoid. In extremely rare cases where there is severe to extremely turbulence, the pilots may decide to divert the aircraft and land, but this is very, very rare.

On most occasions, what the general public would consider to be severe turbulence, is rarely more than moderate from the pilots point of view.

 

Turbulence Categorisation

Turbulence is categorised into Light, Moderate and Severe. The official definitions from IATA are as follows:

Light Turbulence:

Slight, erratic changes in altitude and/or attitude (pitch, roll, yaw).

  • Liquids are shaking but not splashing out of cups
  • Carts can be maneuvered with little difficulty
  • Passengers may feel a light strain against seat belts

Moderate Turbulence: 

Changes is altitude and/or attitude occur but with more intensity than light turbulence. Aircraft remains in control at all times.

  •   Liquids are splashing out of cups
  • Difficulties to walk or stand without balancing or holding on to something. Carts are difficult to maneuver
  • Passengers feel definite strain against seat belt

Severe Turbulence:

Large, abrupt changes in altitude and/or attitude. Usually causes large variations in airspeed.

    •   Items are falling over unsecured objects are tossed about.
    • Walking is impossible
    • Passengers are forced violently against seat belts